
中级AI算法工程师测试题 - 答案与评分标准

本文档仅供内部评分使用

一、算法与数据结构进阶(25分)

1. 算法设计与优化(15分)

1.1 Top-K问题 (8分)

参考答案：

方法一：排序法 (2分)

方法二：最小堆 (3分)

思路：

- 对整个数组排序
- 返回 nums[n-k]（第k大即倒数第k个）

时间复杂度：O(n log n)
空间复杂度：O(1) 或 O(n)（取决于排序算法）

优点：简单直接

缺点：不必要地排序了所有元素



方法三：快速选择 (QuickSelect) (3分)

频繁查询优化：

可以维护一个排序好的数组或平衡二叉搜索树

或使用顺序统计树，支持O(log n)查询任意第k大

流式数据处理：

使用大小为k的最小堆

新数据到来时更新堆

近似方法：Count-Min Sketch, Reservoir Sampling

思路：

- 维护一个大小为k的最小堆
- 遍历数组，保持堆中是最大的k个元素
- 堆顶就是第k大的元素

伪代码：

heap = MinHeap(size=k)
for num in nums:
    if heap.size < k:
        heap.push(num)
    elif num > heap.top():
        heap.pop()
        heap.push(num)
return heap.top()

时间复杂度：O(n log k)
空间复杂度：O(k)

思路：

- 类似快速排序的分区思想
- 每次选择pivot，将数组分为大于和小于pivot的两部分
- 根据pivot位置决定继续在哪一部分搜索

平均时间复杂度：O(n)
最坏时间复杂度：O(n²) - 可通过随机选择pivot优化
空间复杂度：O(1)

优点：平均情况下最优



评分标准：

给出两种方法各2-3分（共5分）

复杂度分析正确（2分）

频繁查询优化（1分）

流式处理思路（加分项，答出可+1分）

1.2 最长递增子序列 (7分)

参考答案：

O(n²) 动态规划解法 (3分)

O(n log n) 优化解法 (3分)

状态定义：

dp[i] = 以nums[i]结尾的最长递增子序列长度

状态转移：

dp[i] = max(dp[j] + 1) for all j < i where nums[j] < nums[i]
如果没有这样的j，dp[i] = 1

初始化：dp[i] = 1 (每个元素自己构成长度1的序列)

答案：max(dp[i]) for all i

伪代码：

n = len(nums)
dp = [1] * n
for i from 1 to n-1:
    for j from 0 to i-1:
        if nums[j] < nums[i]:
            dp[i] = max(dp[i], dp[j] + 1)
return max(dp)

时间复杂度：O(n²)
空间复杂度：O(n)



输出具体子序列 (1分)

评分标准：

O(n²) DP状态定义和转移正确（3分）

O(n log n)优化思路正确（3分）

核心思想：

- 维护一个数组 tails，tails[i] 表示长度为 i+1 的递增子序列的最小末尾元素
- tails 数组是单调递增的
- 对每个元素，用二分查找找到它在 tails 中的位置

伪代码：

tails = []
for num in nums:
    pos = binary_search(tails, num)  // 找到第一个 >= num 的位置
    if pos == len(tails):
        tails.append(num)
    else:
        tails[pos] = num
return len(tails)

例子：nums = [10,9,2,5,3,7,101,18]
遍历过程：

- 10: tails = [10]
- 9:  tails = [9]   (9替换10)
- 2:  tails = [2]   (2替换9)
- 5:  tails = [2,5]
- 3:  tails = [2,3] (3替换5)
- 7:  tails = [2,3,7]
- 101:tails = [2,3,7,101]
- 18: tails = [2,3,7,18] (18替换101)
答案：4

时间复杂度：O(n log n)
空间复杂度：O(n)

需要额外记录每个位置的前驱：

- 在DP过程中，记录 prev[i] = j (表示i的前一个元素是j)
- 从最大的dp[i]反向追溯
- 或在优化解法中，同时维护实际的序列元素索引



输出序列的方法（1分）

2. 图算法应用(10分)

2.1 并查集(Union-Find) (10分)

参考答案：

(a) 核心操作实现 (4分)

(b) 优化策略 (3分)

路径压缩 (Path Compression):

python

class UnionFind:
    def __init__(self, n):
        self.parent = [i for i in range(n)]  # 每个节点的父节点
        self.rank = [0] * n                   # 树的秩（高度）
    
    def find(x):
        # 查找x的根节点，同时进行路径压缩
        if parent[x] != x:
            parent[x] = find(parent[x])  // 路径压缩
        return parent[x]
    
    def union(x, y):
        # 合并x和y所在的集合
        root_x = find(x)
        root_y = find(y)
        
        if root_x == root_y:
            return  # 已经在同一集合
        
        // 按秩合并：将秩小的树连接到秩大的树
        if rank[root_x] < rank[root_y]:
            parent[root_x] = root_y
        elif rank[root_x] > rank[root_y]:
            parent[root_y] = root_x
        else:
            parent[root_y] = root_x
            rank[root_x] += 1



在find操作时，将路径上所有节点直接连到根节点

减少树的高度，加速后续查询

实现： parent[x] = find(parent[x])

效果：树变得扁平，查询接近O(1)

按秩合并 (Union by Rank):

合并时，将秩小的树连到秩大的树上

保持树的平衡，避免退化成链表

秩可以是树的高度或大小

效果：树的高度控制在O(log n)

复杂度：

单独使用路径压缩：均摊O(log n)

单独使用按秩合并：均摊O(log n)

两者结合：均摊O(α(n))，α是反阿克曼函数，实际上≈常数

(c) 应用场景分析 (3分)

问题：

n个节点，m次操作（连接边或查询连通性）

并查集方法：

初始化：O(n)

每次操作：均摊O(α(n)) ≈ O(1)

总时间：O(n + m·α(n)) ≈ O(n + m)

DFS/BFS方法：

每次查询需要遍历图：O(n + edges)

m次查询总时间：O(m·n)

非常慢，特别是查询次数多时

并查集优势：

动态维护连通性非常高效

适合"连接-查询"交替的场景

实现简单，常数小



实际应用：

网络连通性检测

图像分割（连通区域）

Kruskal最小生成树算法

社交网络（判断两人是否在同一社交圈）

评分标准：

find和union实现正确（各2分，共4分）

两种优化解释清楚（各1.5分，共3分）

复杂度对比和优势分析（3分）

二、深度学习算法理解(35分)

3. Transformer与Attention机制(15分)

3.1 Attention机制深入理解 (8分)

参考答案：

为什么除以√d_k？(2分)

直觉解释：

当d_k很大时，QK^T的点积结果会很大

大的点积值进入softmax后，梯度会变得很小（梯度消失）

例如：如果QK^T中某个值是100，softmax后接近1，其他接近0，梯度几乎为0

数学角度：

假设Q和K的元素是均值0、方差1的独立变量

QK^T的点积是d_k个项相加，方差会累积到d_k

除以√d_k后，方差归一化回1

保持数值稳定，梯度流动更好

时间和空间复杂度 (2分)

对于序列长度n，特征维度d：

QK^T: (n, d) × (d, n) = (n, n) - 时间O(n²d)



softmax: 对(n, n)矩阵 - 时间O(n²)

乘以V: (n, n) × (n, d) = (n, d) - 时间O(n²d)

总时间复杂度: O(n²d)

空间复杂度: O(n²) - 存储attention矩阵

瓶颈： 长序列时n²的复杂度，例如n=4096时需要16M的attention矩阵

Multi-Head优势 (2分)

多样性: 不同head学习不同的attention pattern

有的head关注局部信息（相邻词）

有的head关注长距离依赖

有的head关注句法关系、语义关系等

表征子空间: 类似CNN的多通道，捕获不同特征

集成效果: 多个head的组合比单个更robust

Encoder-Decoder架构中的Attention (2分)

1. Encoder Self-Attention:
Q, K, V都来自encoder的前一层输出

每个位置关注整个输入序列

2. Decoder Self-Attention (Masked):

Q, K, V都来自decoder的前一层输出

使用mask，只能关注当前位置之前的token（因果attention）

保证生成时的自回归性质

3. Cross-Attention (Encoder-Decoder Attention):
Q来自decoder当前层

K, V来自encoder的输出

Decoder关注Encoder的信息

评分标准：

√d_k的解释（2分）

复杂度分析正确（2分）

Multi-Head优势（2分）

Encoder-Decoder的三种Attention（2分）



3.2 优化长序列Attention (7分)

参考答案（选择任意两种详细解释）：

方法一：Sparse Attention (稀疏注意力)

核心思想：

不是每个位置都关注所有其他位置

只关注一部分位置，形成稀疏的attention矩阵

常见pattern：

1. 局部窗口: 每个位置只关注前后w个位置

2. 跨步attention: 每隔k个位置关注一次

3. 全局token: 某些特殊位置（如[CLS]）关注所有位置

复杂度：

时间：O(n·w·d) 或 O(n·√n·d)（取决于pattern）

空间：O(n·w) 而不是O(n²)

性能：

可能损失一些长距离依赖

但在很多任务上效果接近标准attention

例子： Longformer, BigBird

方法二：Sliding Window Attention (滑动窗口)

核心思想：

每个token只关注固定窗口大小w内的token

窗口可以是单向或双向

实现：

窗口大小通常是512或1024

可以多层堆叠，增加感受野

复杂度：



时间：O(n·w·d)，w是窗口大小

空间：O(n·w)

优缺点：

优点：实现简单，效果稳定

缺点：难以捕获超出窗口的依赖

解决：通过多层堆叠，感受野成倍增长

例子： Longformer的局部attention

方法三：Flash Attention (内存优化)

核心思想：

不改变计算量，而是优化GPU内存访问

减少HBM（高带宽内存）和SRAM（片上内存）之间的数据传输

原理：

标准attention需要将整个n×n矩阵存在HBM

Flash Attention将计算分块，每次只加载部分到SRAM

在SRAM中完成计算，减少IO

复杂度：

时间：仍然是O(n²d)，但wall-clock时间更短

空间：O(n)而不是O(n²)

效果：

训练速度提升2-4倍

支持更长的序列

数学上完全等价于标准attention

例子： FlashAttention-1, FlashAttention-2

方法四：Linear Attention (线性复杂度)

核心思想：



用kernel方法近似softmax attention

将attention重新写成线性形式

数学推导：

通过改变计算顺序，先算(K^T V)，复杂度降到O(nd²)

复杂度：

时间：O(nd²)，d通常远小于n

空间：O(nd)

性能：

近似，会有精度损失

在某些任务上效果接近

特别适合超长序列

例子： Linformer, Performer, Linear Transformer

评分标准（每种方法3.5分，选两种共7分）：

核心思想清楚（1.5分）

复杂度分析正确（1分）

说明优缺点或性能（1分）

只答一种方法最多得4分

4. 反向传播与优化器(12分)

4.1 反向传播理解 (6分)

参考答案：

Batch Normalization前向计算 (1.5分)

标准: Attention = softmax(QK^T)V
近似: Attention ≈ φ(Q)(φ(K)^T V)



反向传播复杂性 (1.5分)

为什么比线性层复杂：

均值μ和方差σ²都是x的函数，依赖整个batch

对x的梯度需要考虑：
1. x直接影响x_norm

2. x通过μ影响x_norm

3. x通过σ²影响x_norm

需要用链式法则处理这三条路径

涉及batch维度的求和，梯度要分配给batch中的所有样本

线性层： y = Wx + b，梯度简单：∂L/∂x = W^T · ∂L/∂y

ReLU反向传播 (1分)

梯度消失与BN (2分)

输入：x (batch_size, feature_dim)
参数：γ (可学习的缩放), β (可学习的平移)

步骤：

1. 计算均值：μ = mean(x, axis=0)
2. 计算方差：σ² = var(x, axis=0)
3. 归一化：x_norm = (x - μ) / sqrt(σ² + ε)
4. 缩放平移：y = γ * x_norm + β

其中ε是小常数(1e-5)防止除零

前向：y = max(0, x)

反向：

∂L/∂x = ∂L/∂y * (x > 0)

即：

- 如果x > 0，梯度正常传递
- 如果x ≤ 0，梯度为0（"神经元死亡"）

伪代码：

grad_x = grad_y * (x > 0)



梯度消失问题：

深层网络中，梯度需要连续相乘传播

如果每层梯度<1，多层后梯度→0

特别是Sigmoid/Tanh，导数<1，加剧问题

导致浅层网络参数几乎不更新

BN如何缓解：

1. 归一化激活值： 保持激活值在合理范围（均值0方差1）

2. 避免饱和： 激活值不会太大或太小，激活函数梯度更好

3. 平滑损失曲面： 使优化更容易，梯度更稳定

4. 允许更大学习率： 加速训练，更快走出梯度小的区域

评分标准：

BN前向步骤（1.5分）

反向传播复杂性解释（1.5分）

ReLU梯度（1分）

梯度消失和BN作用（2分）

4.2 优化器对比 (6分)

参考答案：

SGD vs SGD with Momentum vs Adam (2分)

SGD (随机梯度下降):

最简单，直接用梯度更新

可能在ravines（山谷）中震荡

收敛慢

SGD with Momentum:

θ = θ - lr * g



累积过去梯度的动量

减少震荡，加速收敛

类似物理中的惯性

Adam (Adaptive Moment Estimation):

结合Momentum（一阶矩）和RMSprop（二阶矩）

自适应学习率，每个参数不同

通常默认选择，效果稳定

Adam为什么更快？(1.5分)

1. 自适应学习率：
对频繁更新的参数用小学习率

对稀疏更新的参数用大学习率

不需要手动调整每个参数的lr

2. 动量加速：
一阶矩m平滑梯度方向

减少噪声，更稳定的更新方向

3. 适应不同scale：
二阶矩v标准化梯度

对梯度大小不敏感

Learning Rate Warm-up (1分)

什么是warm-up：

训练初期，学习率从很小逐渐增加到目标值

例如：从0线性增加到0.001，持续1000步

为什么需要（特别是大模型）：

v = β * v + g
θ = θ - lr * v

m = β₁ * m + (1-β₁) * g      # 一阶矩估计
v = β₂ * v + (1-β₂) * g²     # 二阶矩估计
θ = θ - lr * m / (sqrt(v) + ε)



1. 初始化不稳定： 参数随机初始化，梯度可能很大

2. Adam的bias： 开始时m和v的估计不准

3. 防止早期震荡： 小学习率让模型先稳定下来

4. batch size影响： 大batch训练需要warm-up稳定

AdamW改进 (1分)

与Adam的区别：

Adam: L2正则化加在梯度上

AdamW: Weight decay直接作用于参数

为什么重要：

在Adam中，L2正则和weight decay不等价（因为自适应学习率）

AdamW的weight decay效果更好

特别是在视觉任务和大模型上

SGD vs Adam的权衡 (0.5分)

SGD可能更好的情况：

1. 泛化性能： 有研究表明SGD找到的最优点更"平坦"，泛化更好

2. 小数据集： Adam容易过拟合

3. 长时间训练： 给足够时间，SGD可能收敛到更好的解

4. 计算机视觉： ResNet等模型传统上用SGD效果好

Adam更好的情况：

快速收敛

NLP任务

不想精细调lr

  g = g + λ * θ  (将weight decay加入梯度)
  然后用Adam更新

  先用Adam更新：θ' = θ - lr * m / sqrt(v)
  再做weight decay：θ = θ' - lr * λ * θ



大模型训练

评分标准：

三种优化器对比（2分）

Adam快的原因（1.5分）

Warm-up解释（1分）

AdamW改进（1分）

SGD vs Adam权衡（0.5分）

5. 模型架构设计(8分)

5.1 残差连接 (4分)

参考答案：

为什么能训练更深的网络？(2分)

梯度流角度：

假设残差块：y = F(x) + x

反向传播时：

关键点： "+1"项

即使∂F/∂x很小（甚至为0），梯度仍能通过"+1"直接传递

创建了一条梯度的"高速公路"

浅层网络可以直接收到梯度信号

对比普通网络：

普通：y = F(x)，梯度∂L/∂x = ∂L/∂y * ∂F/∂x

如果F是多层，∂F/∂x是连乘，容易消失

残差：至少保证梯度不小于∂L/∂y

Transformer中的位置 (1分)

∂L/∂x = ∂L/∂y * ∂y/∂x
      = ∂L/∂y * (∂F/∂x + 1)
      = ∂L/∂y * ∂F/∂x + ∂L/∂y



残差连接在Transformer的两个地方：

1. Multi-Head Attention之后：

2. Feed-Forward之后：

每个sub-layer后都有残差连接

Pre-LN vs Post-LN (1分)

Post-LN (原始Transformer):

先做残差，再normalize

训练可能不稳定（特别是深层网络）

Pre-LN (现代常用):

先normalize，再做残差

训练更稳定

深层网络更容易训练

GPT-2, GPT-3等都用Pre-LN

哪个更常用： Pre-LN，因为稳定性更好

评分标准：

梯度流解释（2分）

Transformer中的位置（1分）

Pre-LN vs Post-LN（1分）

   x' = x + MultiHeadAttention(x)

   x'' = x' + FeedForward(x')

x' = LayerNorm(x + SubLayer(x))

x' = x + SubLayer(LayerNorm(x))



5.2 位置编码 (4分)

参考答案：

正弦位置编码公式 (1分)

偶数维用sin，奇数维用cos

为什么用正弦函数？(1分)

1. 周期性： 不同频率的正弦波可以表示不同的位置关系

2. 相对位置： 任意位置pos+k可以表示为pos的线性组合（因为三角恒等式）

3. 外推性： 可以处理比训练时更长的序列

4. 范围固定： 值在[-1,1]，不会随位置增大

如果用整数索引：

位置值没有上界，可能影响训练

无法表示相对位置关系

难以外推到更长序列

可学习 vs 固定位置编码 (1分)

固定位置编码（如正弦）：

优点：不需要学习，参数少；可外推到任意长度

缺点：可能不是最优的；无法适应特定任务

可学习位置编码：

优点：可以学到任务特定的位置信息；可能效果更好

缺点：增加参数；难以外推到更长序列；需要更多数据

实践： 两种效果相近，现代模型（如BERT）常用可学习的

PE(pos, 2i)   = sin(pos / 10000^(2i/d))
PE(pos, 2i+1) = cos(pos / 10000^(2i/d))

其中：

- pos: 位置索引 (0, 1, 2, ...)
- i: 维度索引 (0到d/2)
- d: 模型维度



相对位置编码优势 (1分)

绝对位置编码：

每个位置有固定的编码

问题：位置0和位置100的关系，与位置50和位置150的关系，无法共享

相对位置编码：

只关心token之间的相对距离

例如：距离为2的两个token，无论在哪里，编码相同

优势：

1. 平移不变性： 序列整体移动，关系不变

2. 更好的外推： 训练时的相对位置关系可用于更长序列

3. 性能提升： 在很多任务上效果更好

例子： T5, DeBERTa等使用相对位置编码

评分标准：

正弦公式（1分）

使用正弦的原因（1分）

可学习vs固定（1分）

相对位置优势（1分）

三、机器学习理论(25分)

6. 概率与生成模型(10分)

6.1 变分自编码器(VAE) (6分)

参考答案：

编码器和解码器输出 (1.5分)

编码器(Encoder)：

输入：数据x（如图像）

输出：后验分布q(z|x)的参数
μ (均值向量)



σ² (方差向量，或log(σ²))

通常假设q(z|x)是高斯分布N(μ, σ²)

解码器(Decoder)：

输入：隐变量z

输出：重构数据的分布p(x|z)的参数
对图像：可能输出像素值（均值）

对二值图像：输出伯努利分布参数

或直接输出重构的x'

KL散度项的作用 (1.5分)

KL散度项KL(q(z|x) || p(z))的作用：

1. 正则化： 约束后验q(z|x)接近先验p(z)（通常是N(0,I)）

2. 防止过拟合： 不让编码器学出任意的分布

3. 结构化隐空间： 让隐变量z有良好的结构，方便采样生成

4. 平衡： 如果只有重构损失，编码器可能把z映射到很分散的区域

没有KL项： 编码器可能学到一个完美的编码，但隐空间混乱，无法生成

Reparameterization Trick (2分)

问题：

需要从q(z|x) = N(μ, σ²)采样z

采样操作不可微，无法反向传播

不能直接采样的原因：

采样操作阻断了梯度流

ELBO = E[log p(x|z)] - KL(q(z|x) || p(z))
       重构损失           正则化项

z ~ N(μ, σ²)  // 这是一个随机操作
loss = f(z)
如何计算 ∂loss/∂μ 和 ∂loss/∂σ ？



Reparameterization trick：

效果： 梯度可以通过z反向传播到μ和σ

VAE生成模糊的原因 (1分)

1. 重构损失（MSE）： 鼓励输出是"平均"的图像

如果训练集中有多种可能，VAE输出平均值

导致细节模糊

2. 隐空间正则化： KL项强制隐空间平滑

相似的z生成相似的x

减少多样性

3. 高斯假设： 假设p(x|z)是高斯，适合平滑重构

对比GAN：

GAN用判别器，直接优化生成质量

不需要像素级重构，可以生成更锐利的图像

评分标准：

编码器/解码器输出（1.5分）

KL项作用（1.5分）

Reparameterization trick（2分）

模糊原因（1分）

6.2 VAE vs GAN (4分)

参考答案：

不直接采样z ~ N(μ, σ²)
而是：

1. 采样 ε ~ N(0, I)  (与μ,σ无关)
2. 计算 z = μ + σ ⊙ ε

现在z是μ和σ的确定性函数，可以求梯度：
∂z/∂μ = 1
∂z/∂σ = ε



训练目标的本质区别 (2分)

VAE：

目标：最大化ELBO（数据的对数似然下界）

显式建模数据分布p(x)

通过最大化似然训练

有明确的目标函数

GAN：

目标：通过对抗训练让生成分布接近真实分布

隐式建模，不直接优化似然

通过对抗游戏训练

目标是让判别器无法区分

核心差异： VAE是似然方法，GAN是对抗方法

各自优缺点 (1.5分)

VAE：

✅ 优点：
训练稳定

有理论保证（优化ELBO）

可以直接计算似然

有良好的隐空间结构

❌ 缺点：
生成质量较差（模糊）

像素级重构损失不理想

假设过强（高斯分布）

  max E[log p(x|z)] - KL(q(z|x) || p(z))

  Generator: 生成假数据骗过Discriminator
  Discriminator: 区分真假数据



GAN：

✅ 优点：

生成质量高（锐利、逼真）

不需要显式建模

可以生成复杂分布

❌ 缺点：
训练不稳定（模式崩溃、梯度消失）

难以评估（没有似然）

超参数敏感

没有encoder（不能编码真实数据）

选择VAE的场景 (0.5分)

1. 需要编码能力：

要把真实数据映射到隐空间

如数据压缩、特征提取

2. 训练稳定性重要：
资源有限，不想调参

需要可靠的训练过程

3. 需要似然估计：
异常检测（计算p(x)）

需要理论保证

4. 插值和编辑：

隐空间平滑，便于插值

语义编辑

例子：

药物分子生成（需要encoder）

数据压缩

半监督学习（利用隐变量）

评分标准：

训练目标差异（2分）



优缺点对比（1.5分）

选择VAE的场景（0.5分）

7. 损失函数与正则化(8分)

7.1 损失函数设计 (4分)

参考答案：

为什么用交叉熵而不是MSE？(1分)

交叉熵（Cross-Entropy）：

MSE（均方误差）：

原因：

1. 概率解释：

分类输出是概率分布

交叉熵衡量两个分布的差异

MSE更适合连续值预测

2. 梯度特性：
交叉熵+softmax：梯度是(y_pred - y_true)，清晰

MSE+softmax：梯度包含softmax导数，可能很小

3. 数值稳定性：
交叉熵对极端错误惩罚更大

加速学习

类别不平衡的调整 (1分)

问题： 类别1有9000个样本，类别2有1000个样本

模型可能总预测类别1，准确率90%但无用

对于分类：L = -∑ y_true * log(y_pred)
对于二分类：L = -[y*log(p) + (1-y)*log(1-p)]

L = (y_pred - y_true)²



解决方法：

1. 类别权重(Class Weights)：

给少数类更大权重

2. Focal Loss：

降低易分样本的权重

关注难分样本

α平衡类别，γ控制关注度

3. 重采样：

过采样少数类

欠采样多数类

对比学习的InfoNCE (1分)

核心思想：

拉近正样本对，推远负样本对

学习语义相似的表征

InfoNCE损失：

其中：

sim(·,·)是相似度（如余弦相似度）

τ是温度参数

分子：正样本对的相似度

分母：正样本+所有负样本

   weight = n_samples / (n_classes * n_samples_per_class)
   loss = weight * CE_loss

   FL = -α * (1-p)^γ * log(p)

对于anchor样本x和正样本x+，负样本{x-}:

L = -log( exp(sim(x,x+)/τ) / (exp(sim(x,x+)/τ) + ∑exp(sim(x,x-)/τ)) )



效果： 最大化正样本对的相似度，同时与负样本区分开

Huber Loss使用场景 (1分)

Huber Loss公式：

特点：

结合了MSE和MAE

小误差时用平方（MSE），大误差时用绝对值（MAE）

对比：

MSE： 对大误差惩罚重，容易受离群点影响

MAE： 对所有误差同等对待，梯度恒定

Huber： 在小误差区域梯度大（快速收敛），大误差区域稳健

使用场景：

1. 数据中有离群点（outliers）

2. 目标检测中的bbox回归

3. 强化学习（Q-learning）

4. 需要对大误差稳健但保持收敛速度

评分标准：

交叉熵vs MSE（1分）

类别不平衡方法（1分）

InfoNCE解释（1分）

Huber Loss（1分）

7.2 正则化技术 (4分)

参考答案：

L1 vs L2正则化 (1分)

L(y, ŷ) = { ½(y-ŷ)²         if |y-ŷ| ≤ δ
          { δ|y-ŷ| - ½δ²   otherwise



L2正则化（Ridge）：

效果：权重衰减，参数变小但不为0

L1正则化（Lasso）：

效果：权重可以变为0，产生稀疏解

为什么L1产生稀疏？

L1的梯度是常数λ*sign(θ)，不管θ多小

小权重持续被推向0

L2的梯度是2λθ，θ小时梯度小，不容易到0

几何解释： L1是菱形，容易在坐标轴交点（即某维为0）

Dropout训练vs推理 (1分)

训练时：

推理时：

为什么不同？

Loss = L_data + λ * ||θ||₂² = L_data + λ * ∑θᵢ²
梯度：∂Loss/∂θ = ∂L/∂θ + 2λθ
更新：θ = θ - lr*(grad + 2λθ) = (1-2λlr)*θ - lr*grad

Loss = L_data + λ * ||θ||₁ = L_data + λ * ∑|θᵢ|
梯度：∂Loss/∂θ = ∂L/∂θ + λ*sign(θ)

每个神经元以概率p被"丢弃"（输出设为0）
保留的神经元输出不变（或除以(1-p)缩放）

例如：dropout_rate=0.5
一半神经元随机置0

所有神经元都保留

输出乘以(1-p)

或：训练时除以(1-p)，推理时不变（更常用）



训练： 随机dropout模拟集成学习，防止过拟合

推理： 要用完整模型，但需要补偿训练时的dropout

效果：

类似训练了多个子网络的集成

每次dropout是不同的子网络

Label Smoothing原理 (1分)

硬标签（Hard Label）：

软标签（Label Smoothing）：

例子： K=5, ε=0.1

原标签：[0, 0, 1, 0, 0]

平滑后：[0.025, 0.025, 0.9, 0.025, 0.025]

如何防止过拟合：

1. 减少过自信： 不鼓励模型输出极端概率（接近0或1）

2. 改善泛化： 对其他类别保留一点概率

3. 平滑决策边界： 类别间的区分不那么绝对

4. 正则化效果： 相当于最小化KL散度到均匀分布的加权版本

Data Augmentation是正则化吗？(1分)

答案：是的

理由：

1. 增加数据多样性： 模拟更多可能的变化

2. 防止记住训练集： 每个epoch看到的数据都不同

3. 等价于正则化： 在数据空间添加先验知识

4. 减少过拟合： 模型必须学习不变性而非记忆

真实类别：[0, 0, 1, 0, 0]  (one-hot)

平滑后：[ε/(K-1), ε/(K-1), 1-ε, ε/(K-1), ε/(K-1)]
其中ε是平滑系数（如0.1），K是类别数



类比：

L2正则：在参数空间约束

Dropout：在网络结构上随机化

Data Augmentation：在数据空间扩充

常见方法：

图像：旋转、翻转、裁剪、颜色抖动

文本：同义词替换、回译

音频：时间拉伸、加噪声

评分标准：

L1 vs L2（1分）

Dropout差异（1分）

Label Smoothing（1分）

Data Augmentation（1分）

8. 评估与调试(7分)

8.1 模型评估指标 (4分)

参考答案：

二分类指标定义 (1.5分)

混淆矩阵：

准确率(Accuracy)：

精确率(Precision)：

                预测为正    预测为负
实际为正        TP         FN
实际为负        FP         TN

Accuracy = (TP + TN) / (TP + TN + FP + FN)
所有预测正确的比例



召回率(Recall/TPR)：

F1分数：

准确率误导的情况 (1分)

例子：

疾病检测：1000个样本，990个健康，10个患病

模型总预测"健康"

准确率 = 990/1000 = 99%

但模型完全无用！所有患病都漏检（Recall=0）

为什么误导：

类别不平衡时，准确率被多数类主导

不能反映少数类（往往是我们关心的）的性能

解决：

看Precision, Recall, F1

使用混淆矩阵

针对每个类别单独评估

ROC vs PR曲线 (1分)

ROC曲线：

横轴：FPR = FP/(FP+TN)（假阳性率）

Precision = TP / (TP + FP)
预测为正的样本中，真正为正的比例

回答："预测的有多准？"

Recall = TP / (TP + FN)
实际为正的样本中，被正确预测的比例

回答："找到了多少？"

F1 = 2 * (Precision * Recall) / (Precision + Recall)
精确率和召回率的调和平均

平衡两者



纵轴：TPR = TP/(TP+FN)（真阳性率/Recall）

AUC-ROC：曲线下面积，越大越好

适合：类别相对平衡

PR曲线：

横轴：Recall

纵轴：Precision

AP (Average Precision)：曲线下面积

适合：类别不平衡

何时用PR曲线：

正样本很少（如异常检测、稀有疾病）

更关注正类的表现

PR曲线对不平衡更敏感，ROC可能过于乐观

多分类评估 (0.5分)

Macro-averaging：

每个类别权重相同

适合关注所有类别表现

Micro-averaging：

每个样本权重相同

被大类主导

Weighted-averaging：

对每个类别计算指标，然后简单平均

Macro-F1 = (F1_class1 + F1_class2 + ... + F1_classK) / K

全局计算TP, FP, FN，然后算指标
Micro-F1 = 2*TP / (2*TP + FP + FN)

按各类别样本数加权平均

Weighted-F1 = ∑(n_i * F1_i) / n_total



考虑类别大小

更全面

评分标准：

四个指标定义（1.5分）

准确率误导例子（1分）

ROC vs PR（1分）

多分类方法（0.5分）

8.2 训练问题诊断 (3分)

参考答案：

Loss变成NaN (1分)

可能原因：

1. 梯度爆炸：
梯度太大，参数更新过大

导致数值溢出

2. 学习率过大：
更新步长太大

跳过最优点，发散

3. 数值不稳定：

log(0)或除以0

softmax输入过大导致exp溢出

4. 数据问题：

输入包含NaN或Inf

标签错误

解决方法：

降低学习率

梯度裁剪 (gradient clipping)

检查数据预处理

使用更稳定的损失函数（如log-sum-exp技巧）



Batch Normalization

Loss不下降或震荡 (1分)

Loss不下降：

学习率过小： 更新太慢

初始化问题： 权重初始化不当

梯度消失： 深层网络，梯度传不回来

优化器选择： 可能需要Adam而不是SGD

局部最小值/鞍点： 卡住了（较少见）

解决：

提高学习率或用学习率调度

更好的初始化（Xavier, He）

换优化器

检查网络架构（加BN、残差连接）

Loss震荡：

学习率过大： 在最优点附近跳跃

Batch size太小： 梯度噪声大

数据问题： 某些batch特别难

解决：

降低学习率

增大batch size

梯度累积

使用学习率warm-up

训练集下降但验证集上升 (1分)

诊断：过拟合

原因：

模型容量太大

训练时间太长

数据太少



没有正则化

解决方法：

1. 模型层面：

减小模型（层数、宽度）

增加Dropout

L2正则化

Early Stopping

2. 数据层面：

增加训练数据

Data Augmentation

减少数据泄露

3. 训练层面：
降低学习率

减少训练epochs

监控验证集，及时停止

4. 其他：

Batch Normalization

Label Smoothing

集成学习

评分标准：

NaN原因和解决（1分）

不下降/震荡诊断（1分）

过拟合识别和方法（1分）

四、大模型训练基础(15分)

9. 分布式训练策略(10分)

9.1 并行策略理解 (6分)

参考答案：



训练时存储的内容 (1.5分)

对于一个模型，训练时GPU需要存储：

1. 模型权重 (Parameters)：
FP16：2 bytes/参数

7B参数 × 2 bytes = 14GB

2. 梯度 (Gradients)：
与权重同样大小

FP16：14GB

3. 优化器状态 (Optimizer States)：

Adam需要：
一阶矩 m (FP32): 7B × 4 = 28GB

二阶矩 v (FP32): 7B × 4 = 28GB

共56GB

4. 激活值 (Activations)：

前向传播的中间结果，用于反向传播

大小取决于batch size和序列长度

通常是最大的内存消耗

总计： 14 + 14 + 56 = 84GB（不含激活值）

一张40GB的GPU装不下！

显存估算 (0.5分)

7B参数模型，FP16权重 + FP32优化器：

权重：7B × 2 bytes = 14GB

梯度：7B × 2 bytes = 14GB

优化器：7B × 4 × 2 = 56GB (m和v都是FP32)

小计：84GB

激活值（例如batch=8, seq_len=2048, hidden=4096）：

粗略估计：batch × seq × hidden × layers × bytes

可能需要几十GB

结论： 单卡40GB远远不够



数据并行 (1.5分)

工作原理：

1. 每张GPU有完整的模型副本

2. 数据切分到不同GPU（mini-batch分片）

3. 各GPU独立前向和反向传播

4. 梯度通过AllReduce同步

5. 所有GPU用相同的梯度更新参数

通信量：

每步需要同步梯度：2 × model_size (FP16)

7B模型：14GB梯度需要通信

使用Ring-AllReduce可以优化

瓶颈：

通信开销： GPU间通信带宽有限

GPU利用率： 小模型时，通信时间>计算时间

显存限制： 每张GPU仍需完整模型

适合： 模型小，数据大

模型并行 (1.5分)

Tensor Parallelism (张量并行)：

在Transformer中切分：

方式1：按列切分（Column Parallel）

方式2：按行切分（Row Parallel）

Attention的Q,K,V投影：
原始：X @ W -> (batch, seq, hidden)
切分：W切成[W1, W2]，分布到2个GPU
GPU1: X @ W1 -> (batch, seq, hidden/2)
GPU2: X @ W2 -> (batch, seq, hidden/2)
结果拼接



通信：

每层前向和反向都需要通信

通信量相对较小

梯度累积 (1分)

什么是梯度累积：

什么时候需要：

1. 显存不足： 无法用大batch size

想要batch=64，但显存只够batch=16

用4次梯度累积，等效batch=64

2. 模拟大batch：
大batch通常效果更好（更稳定的梯度）

但受限于硬件

效果：

等效于更大的batch size

不增加显存（因为逐个mini-batch处理）

增加训练时间（更新频率降低）

注意： Batch Normalization统计量仍基于小batch

Feed-Forward的第二层：
原始：H @ W -> (batch, seq, hidden)
切分：W按行切成[W1; W2]
GPU1: H1 @ W1 -> partial output
GPU2: H2 @ W2 -> partial output
结果求和（AllReduce）

不是每个batch就更新参数，而是：
1. 前向传播 mini-batch 1，计算梯度，累加
2. 前向传播 mini-batch 2，计算梯度，累加
3. ...
4. 累积N个mini-batch后，一次性更新参数
5. 清空梯度，重复



评分标准：

存储内容列举（1.5分）

显存估算（0.5分）

数据并行原理和瓶颈（1.5分）

模型并行切分方法（1.5分）

梯度累积解释（1分）

9.2 训练效率优化 (4分)

参考答案：

混合精度训练原理 (1.5分)

原理：

大部分计算用FP16（16位浮点）

关键部分保留FP32（32位浮点）

利用现代GPU的FP16算力（比FP32快2-4倍）

为什么能加速：

1. 计算更快： Tensor Core加速FP16矩阵乘法

2. 显存更少： 激活值和中间结果占用减半

3. 带宽更高： 内存传输减少

具体做法：

FP16问题和Loss Scaling (1.5分)

FP16的问题：

1. 数值下溢(Underflow)：

1. 权重保留FP32副本（master weights）
2. 前向传播用FP16
3. 损失计算和反向传播用FP16
4. 梯度转回FP32
5. 用FP32梯度更新FP32权重
6. 权重转FP16用于下次前向传播



FP16最小正数：~6×10^-8

梯度经常小于这个值

小梯度被截断为0

2. 数值上溢(Overflow)：

FP16最大值：~65,000

激活值或损失可能超过

变成Inf

Loss Scaling解决下溢：

为什么动态调整scale：

scale太小：梯度仍可能下溢

scale太大：可能导致上溢（梯度变成Inf）

动态调整：

检测到Inf/NaN时，降低scale

连续多步正常时，增大scale

自动找到合适的scale

Gradient Checkpointing (1分)

原理：

正常训练：保存所有中间激活值用于反向传播

Checkpointing：只保存部分激活值

需要时重新计算（用前向传播）

权衡：

思路：将loss放大，使梯度变大，避免下溢

1. 前向传播正常（FP16）
2. Loss乘以scale（如2^16）：loss = loss * scale
3. 反向传播（梯度都变大了，不会下溢）
4. 梯度除以scale还原：grad = grad / scale
5. 用还原的梯度更新参数

效果：小梯度被放大，不会变成0



显存减少： 只保存checkpoints，其他激活值丢弃
可减少80%激活值显存

时间增加： 反向传播时需要重新计算
约增加30-50%计算时间

使用场景：

显存不足，想训练更大模型或更大batch

例如：训练BERT-large，用checkpointing能用更大batch

实现： PyTorch的 torch.utils.checkpoint

监控训练效率指标 (1分)

关键指标：

1. 吞吐量(Throughput)：
samples/second 或 tokens/second

衡量训练速度

越高越好

2. GPU利用率：
GPU使用率应该>90%

过低说明有瓶颈（数据加载、通信等）

用 nvidia-smi 或 nvitop 监控

3. 显存使用：

监控是否接近上限

合理利用显存（80-90%）

过低说明batch可以更大

4. Loss曲线：
训练loss应该平稳下降

验证loss与训练loss的gap

震荡过大说明学习率可能有问题

5. 梯度统计：
梯度范数（grad norm）

过大可能爆炸，过小可能消失

正常范围：0.1-10



6. 学习率：
当前学习率值

配合loss看是否需要调整

7. 时间分解：

数据加载时间

前向传播时间

反向传播时间

找出瓶颈优化

工具：

TensorBoard, Weights & Biases

PyTorch Profiler

自定义logging

评分标准：

混合精度原理（1.5分）

FP16问题和Loss Scaling（1.5分）

Gradient Checkpointing（1分）

监控指标（至少3个，每个0.3分，共1分）

10. 代码实现与工程(5分)

10.1 训练代码常见问题 (5分)

参考答案：

代码问题识别 (2分)

原代码：

python



问题：

1. zero_grad位置错误 (严重)：
应该在backward之前清零

当前位置：先backward，再step，再zero_grad

正确：zero_grad -> forward -> backward -> step

2. 缺少梯度裁剪：

大模型训练容易梯度爆炸

应该在backward和step之间裁剪

3. 缺少设备管理：
没有将数据移到GPU

应该： batch = {k: v.to(device) for k, v in batch.items()}

4. 缺少.train()模式：
训练前应该 model.train()

Dropout、BN等需要区分训练/推理

5. 没有梯度累积处理：
如果需要大batch，应该支持

6. 没有AMP (混合精度)：
现代训练通常用混合精度

添加梯度裁剪 (0.5分)

for epoch in range(num_epochs):
    for batch in dataloader:
        outputs = model(batch['input'])
        loss = criterion(outputs, batch['labels'])
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

python



为什么需要：

防止梯度爆炸

稳定训练

特别是RNN、Transformer等

混合精度训练添加 (1分)

# 在backward之后，step之前
loss.backward()

# 方法1：按范数裁剪（常用）
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

# 方法2：按值裁剪
torch.nn.utils.clip_grad_value_(model.parameters(), clip_value=0.5)

optimizer.step()

python



保存checkpoint (0.5分)

from torch.cuda.amp import autocast, GradScaler

scaler = GradScaler()

for epoch in range(num_epochs):
    for batch in dataloader:
        optimizer.zero_grad()
        
        # 前向传播用FP16
        with autocast():
            outputs = model(batch['input'])
            loss = criterion(outputs, batch['labels'])
        
        # 反向传播（scaled）
        scaler.scale(loss).backward()
        
        # 梯度裁剪（在unscale后）
        scaler.unscale_(optimizer)
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        
        # 更新参数
        scaler.step(optimizer)
        scaler.update()

python



应该保存：

模型权重

优化器状态（Adam的m和v）

训练进度（epoch, step）

学习率调度器状态

随机数种子（可重现）

损失/指标（记录）

Loss变NaN的debug (1分)

可能原因：

1. 梯度爆炸：
检查：打印梯度范数

# 保存
checkpoint = {
    'epoch': epoch,
    'model_state_dict': model.state_dict(),
    'optimizer_state_dict': optimizer.state_dict(),
    'loss': loss,
    'scaler_state_dict': scaler.state_dict(),  # 如果用AMP
}
torch.save(checkpoint, 'checkpoint.pth')

# 加载
checkpoint = torch.load('checkpoint.pth')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']

python

   total_norm = 0
   for p in model.parameters():
       if p.grad is not None:
           total_norm += p.grad.data.norm(2).item() ** 2
   total_norm = total_norm ** 0.5
   print(f'Grad norm: {total_norm}')



解决：梯度裁剪，降低学习率

2. 学习率过大：

尝试降低10倍

使用warm-up

3. 数值不稳定：
检查loss计算：有没有log(0), 除以0

检查输入：有没有NaN或Inf

4. Batch Normalization：

BN的batch size太小

方差为0导致除零

5. 混合精度问题：

FP16溢出

调整loss scale

排查步骤：

1. 打印loss每一步的值，找到NaN首次出现

2. 检查那一步的输入、输出、梯度

3. 简化模型，逐步添加组件定位问题

4. 使用 torch.autograd.set_detect_anomaly(True) 自动检测

评分标准：

识别代码问题（2分）

梯度裁剪添加（0.5分）

混合精度添加（1分）

Checkpoint内容（0.5分）

NaN debug（1分）

python

   assert not torch.isnan(batch['input']).any()
   assert not torch.isinf(batch['input']).any()


